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1. Background and motivating questions

My research centers around algebraic and geometric structures arising in mirror symmetry.
Mirror symmetry originates in string theory and predicts astonishing and intricate relationships
between seemingly disparate notions such as coherent sheaves, which originate in algebraic geometry
and Lagrangian submanifolds, which are native to symplectic geometry. More precisely, let X be
a smooth projective (or affine) variety. The variety X inherits a natural symplectic structure by
restriction of the usual symplectic form on Pn (or Cn). Kontsevich’s Homological Mirror Symmetry
conjecture applied to X proposes that there exists a mirror to X, (X̌, w), with X̌ a smooth variety
and w : X̌ → A1 a regular function, such that symplectic invariants on X are exchanged with
algebraic invariants on (X̌, w). The richest version of this conjecture asserts that we have an
equivalence of categories:

Fuk(X) ∼= MF (X̌, w)

Here Fuk(X) denotes a suitable Fukaya category and MF (X̌, w) denotes a category of matrix
factorizations of w. This conjecture serves as a powerful guiding light for taking structures which
are transparent on one side of the mirror and revealing new, unexpected structures on the mirror
side. This has lead to the development of tools in both fields that would otherwise have been
difficult to imagine (for notable examples see [Bri, GroHacKeeKon, SeiTho]).

My two main research projects to date aim to exploit mirror symmetry to develop new structures
in both algebraic and symplectic geometry. The first concerns the symplectic cohomology ring,
SH∗(X), of affine varieties X. Symplectic cohomology is defined for a wide class of open symplectic
manifolds but in general is a very poorly behaved and unwieldy invariant. On the other hand, mirror
symmetry suggests that for affine varieties, SH∗(X) should satisfy very strong algebraic finiteness
conditions. In all known examples [Aur, GroHacKee], the mirror to an affine variety X is a pair
(X̌, w) such that the naturally defined morphism:

X̌ → Spec(Γ(OX̌))

is a proper map and Γ(OX̌) is a finitely-generated ring. Our first project seeks to explore conse-
quences of this picture of mirror symmetry for the symplectic cohomology ring. There is a natural
morphism:

CO : SH∗(X) ∼= HH∗(Fuk(X))

which is widely expected to be an isomorphism.1 Mirror symmetry along with the derived invariance
of Hochschild cohomology would then imply that:

SH∗(X) ∼= RΓ(Λ•TX̌ , [w,−])

The right hand side of the equation, which may be viewed as the space of functions on the critical
locus in a suitable “derived” sense, is a finitely generated ring and so we expect the left hand side
to be as well. Moreover, in the case where X is a log Calabi-Yau variety, similar mirror symmetry
considerations imply that SH0(X) should come equipped with a canonical basis over the ground
ring [GroHacKee]. In examples of interest, these canonical bases are expected to be related to other
canonical bases which arise in representation theory and algebraic geometry [GonShe]. The goal of
the first project is to answer the following question:

Question 1.1. Is SH∗(X) finitely generated as a ring? In the case where X is a log Calabi-Yau
variety, does SH0(X) have a canonical basis?

1here we must consider the wrapped Fukaya category of Abouzaid and Seidel
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More precisely, we aim to develop new models for computing symplectic cohomology which are
specifically designed to answer this and related questions. In fact, we expect that the symplectic
cohomology ring can be computed completely algebraically using punctured invariants, variants of
log Gromov-Witten invariants which are currently being developed by Abramovich, Chen, Gross,
Siebert [GroSie]. We describe this program as well as the results we have obtained so far in Section
2.2.1.

My second research project concerns the geometry of the mirror pair (X̌, w). For a general pro-
jective variety X 2, the critical locus of the function w will typically be quite complicated and in par-
ticular non-isolated (see [KapKatzOrlYot] where the case when X is a genus two curve is described
in detail). Mirror symmetry states that the mirror to H∗(X) is a vector space RΓ(Λ•ΩX̌ , dw∧),
which in these examples may be identified with the above space of functions on the derived crit-
ical locus. We may associate to X its Gromov Witten invariants, which may be organized into a
cohomological field theory :

H∗(Mg,n+m)⊗H∗(X)⊗m → H∗(X)⊗n

Question 1.2. Can we intrinsically construct a cohomological field theory with space of states
RΓ(ΛiΩX̌ , dw∧) which is mirror to the Gromov-Witten invariants on X?

Besides its intrinsic importance to any formulation of closed string mirror symmetry, an an-
swer to this question would have interesting applications to singularity theory. When (X̌, w) has
isolated singularities, much work has already been done on Question 1.2, leading in particular to
noncommutative Hodge theory [KatKonPan], a rich collection of invariants which generalize
classical invariants of singularities. Thus, the question can be viewed as attempting to generalize
these Hodge theoretic invariants to more complicated singularities. We will describe our progress
on this question in Section 2.1.1. We will also see in Section 2.1.2 that it is natural to consider
related questions in the equivariant setting where a reductive group G acts on X̌ as well.

2. Past and future research

2.1. Noncommutative Hodge theory.

2.1.1. Global Matrix Factorizations. In joint work with Kevin Lin [LinPom], we developed the
theory of “hybrid models,” categories of matrix factorizations whose critical loci are not necessar-
ily isolated. One major motivation for the development of this theory comes from Katzarkov’s
programme [KapKatzOrlYot] to extend the Homological Mirror Symmetry conjecture to varieties
of general type, where the mirror to such varieties is often a hybrid model. Let Y be a quasi-
projective variety and w a non-constant function w : Y → A1. We begin by establishing some
homological algebra needed to define an appropriate category of matrix factorizations MF (Y,w).
Similar definitions were introduced simultaneously by Orlov [Orl]. We then proved the following
theorem:

Theorem 2.1. If Y is as above and the critical locus is compact, then MF (Y,w) is smooth and
proper. If in addition Y is Calabi Yau, then the category MF (Y,w) is a Calabi Yau dg-category.

We also prove:

Theorem 2.2. HH∗(MF (Y,w)) ∼= H∗(ΛiΩY , dw∧) and HH∗(MF (Y,w)) ∼= H∗(ΛiTY , [w,−])

Here ΛiΩY denotes the exterior powers of the sheaf of differential forms and ΛiTY denotes exterior
powers of the tangent sheaf and [w,−] denotes Schouten bracket with w. The above theorems were
proven independently and in a different way by Anatoly Preygel [Pre]. As a consequence of this

2particularly in examples where X is of general type
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theorem, we obtain a fully extended topological quantum field theory (TQFT) associated to
the category C = MF (Y,w). One way of thinking about a TQFT is as an assignment of operations:

C∗(Mg,m+n)⊗ Z(S1)⊗m → Z(S1)⊗n

where Mg,m+n denotes the moduli space of Riemann surfaces with m incoming circles and n
outgoing circles in a way which is compatible with glueing operations. We have seen that a proper
formulation of mirror symmetry requires the existence of a cohomological field theory, which requires
extending these maps to the Deligne-Mumford compactification. A folk-theorem, due independently
to Kontsevich and Lurie, gives an elegant description of the extra data that is required to extend
a TQFT to the Deligne-Mumford compactification. In particular, the annulus defines a perfect
pairing:

Z(S1)× Z(S1)→ C
which is invariant under the action of orientation-preserving diffeomorphisms of the annulus. Ex-
tending this to a theory defined on the Deligne-Mumford compactifications is then equivalent to
promoting this to a pairing which invariant under a larger group, given by the wreath product of
Z/2Z and SO(2). Equivalently, we can think of choosing a splitting for the Hodge-de Rham spectral
sequence,

HH∗(C)[[u]]→ HC−• (1)

where C is the dg-category of boundary conditions and HC−• denotes the negative cyclic homology,
in a way which is compatible with the above pairing. By [Sab, Pre, LinPom], we now know that
the above spectral sequence degenerates in the case that C = MF (Y,w). We must now determine
how to choose a splitting which is compatible with the above pairing.

In the case of a Landau-Ginzburg model of the form (C[[x1, x2, · · · , xn]], f), where f has isolated
singularities, the above pairing is the residue pairing:

C[[x1, x2, · · · , xn]]

(∂if)
× C[[x1, x2, · · · , xn]]

(∂if)
→ C

(g1, g2)→
∫
|xi|=ε

(g1 · g2)Ωstd∏
i ∂if

The choice of splitting is supplied by Saito’s notion of a good section, which is a reformulation
of his concept of a primitive form [Sai]. Thus, the fundamental question is:

Question 2.3. Can we generalize Saito’s construction of good sections to hybrid models ?

In unpublished work, we have combined the methods of [Ram] with those of [LinPom] in order
to give an explicit formula for this pairing for arbitrary hybrid models, MF (Y,w). The resulting
question can be reduced to a concrete problem in mixed Hodge theory that we are currently
investigating.

2.1.2. Noncommutative Hodge theory of quotient stacks. In this section we consider the situation
where G acts on our variety Y and our potential w : Y → A1 is equivariant for this action. We will
view this as giving a map from the quotient stack w : Y/G→ A1. The motivating question is:

Question 2.4. What is the appropriate notion of noncommutative Hodge structure in these equi-
variant contexts?

As we have previously discussed, the spectral sequence (1) plays a central role in noncommutative
Hodge theory (it is the analogue of the classical Hodge-to-deRham spectral sequence). We say that
a category has the degeneration property if this spectral sequence degenerates. As a first step to
answering the question , in joint work with Daniel Halpern-Leistner [HLPom], we show that:
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Theorem 2.5. [HLPom] Let w : Y/G→ A1 be an LG-model, where Y is a smooth projective over
affine G-scheme such that Γ(Y,OCrit(w))

G 3 is finite dimensional, then the degeneration property
holds for MF(Y/G,w).

We also consider in detail the case when the function w = 0, where our underlying category is
Z-graded and the notion of noncommutative Hodge structure essentially reduces to the notion of a
pure Hodge structure. Let M ⊂ G be a maximal compact subgroup. In this case, we show that one
can recover the equivariant topological K-theory KM (Y an) from the dg-category Perf(Y/G). The
first ingredient is the recent construction by A. Blanc of a topological K-theory spectrum Ktop(A)
for any dg-category A over C [Blanc]. Blanc constructs a Chern character natural transformation
ch : Ktop(A) → HP (A), shows that ch⊗C is an equivalence for Perf of a finite type C-scheme,
and conjectures this property for any smooth and proper dg-category A. We show that ch⊗C is
an isomorphism for all categories of the form Perf(Y), where Y is a smooth DM stack or a smooth
quotient stack. In fact, we expect that this “lattice conjecture” should hold for a much larger
class of dg-categories, such as the categories Db(Y) for any finite type C-stack and Perf(Y/G)
for any quotient stack. Following some ideas of Thomason in [Tho], we next construct a natural
“topologization” map ρG,X : Ktop(Perf(Y/G)) → KM (Y an) for any smooth G-quasiprojective
scheme Y and show:

Theorem 2.6. ([HLPom]) For any smooth quasi-projective G-scheme Y , the topologization map
and the Chern character provide equivalences 4

K∗M (Y an)⊗ C π∗K
top(Perf(Y/G))⊗ C ch //

ρG,Yoo H∗C
per
• (Perf(Y/G))

These results enable us to construct a pure Hodge structure on KM (Y an). The Hodge structure
on KM (Y an) that we obtain in this way has no commutative construction to our knowledge, though
it should be noted that C. Teleman [Tel], has shown that a version of the Hodge-de Rham spectral
sequence forH∗G(Y an) degenerates for suchG-schemes and that the (a priori mixed) Hodge structure
on H∗G(Y an) is pure in this case.

2.1.3. Noncommutative examples, curved string topology, and Symplectic topology. This project,
carried out in [Pom2], can be viewed as a bridge between this section and the next section. It has
two components, an algebraic component and a symplectic component described below. For affine
varieties, Y = Spec(A), an alternative point of view on matrix factorization is that one is “curving”
the algebra A by an element w. This description has the benefit of allowing for noncommutative
generalizations, because it also makes sense to curve noncommutative algebras A by a suitably
central element w. Let M denote a compact simply connected manifold whose rational homotopy
type is “pure Sullivan.”5 We study the non-commutative dga C∗(ΩM), where Ω denotes the based-
loop space at some point and let w be a suitably central element in this ring. We again define an
appropriate category of modules over the curved dga, which we call MF (C∗(ΩM), w).

Theorem 2.7 ([Pom2]). There is an explicit criterion for determining when the category MF (C∗(ΩM), w)
defines a smooth and proper weakly 6 Calabi-Yau category.

Via Koszul duality, this can be viewed as studying certain A∞-smoothings of “derived singular-
ities” of the form C∗(M,C).

3Our theorem in fact holds for certain smooth quasi-projective varieties G-schemes which admit a “semi-complete
KN stratification”
4These homology level equivalences are induced by suitable chain maps
5This is a rational homotopy theoretic analogue of a complete intersection
6In many cases this CY structure can be canonically lifted to HC−
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Next we turn to giving a symplectic intrepretation for some of the algebraic deformations intro-
duced in Theorem 2.7. Let M be a projective variety such that X = M \D, where D is smooth
ample divisor. It has been known since [Sei5] that one can associate to this data an infinitesimal
deformation of Fuk(X) or in other words, a class α ∈ HH∗(Fuk(X)) by counting holomorphic
disks that intersect the divisor exactly once. Building upon this idea, we managed to give a geomet-
ric interpretation of the above deformation in the case M is any simply connected Zoll manifold,
such as Sn (n > 1), CPn and HPn. Using the technique of symplectic cutting, one can define a
canonical compactification M of the open disk bundle D∗(M) by a smooth divisor D. We define
a version of Floer cohomology for the zero section L inside of M , which counts disk that intersect
the divisor D with multiplicity d. A related concept was developed independently by Sheridan[She]
in his proof of the Homological Mirror Symmetry conjecture for Calabi-Yau hypersurfaces in CPn.
In [Pom2], we prove the following result:

Theorem 2.8 ([Pom2]). The category of perfect modules over the A∞ algebra HF ∗d (L,L) is equiv-

alent to MF (C∗(ΩM), ud), where u is a canonically defined central element of H∗(ΩM).

Assume now that we have a strict normal crossings compactification by ample divisors Di,

e.g. X = M \ ∪i=ji=1Di, where the Di all intersect cleanly. Assume further that M and each
∩IDi for each I a subset of [1, 2, · · · , j] is a monotone symplectic manifold. Based upon heuristic
considerations concerning Seidel’s construction together with considerations an auxilliary moduli
space introduced in the proof of the above theorem, [Pom2] defines an algebra A explicitly in
terms of the Gromov-Witten invariants of ∩IDi, which we expect under good circumstances 7 to be
isomorphic to HH0(Fuk(X)). We check in a number of examples that this prediction is consistent
with standard conjectures in mirror symmetry.

2.2. Symplectic topology.

2.2.1. Symplectic Cohomology of Affine Varieties. The computations of Floer theoretic deforma-
tions from [Pom2] are done by slightly ad-hoc methods, and the present project was initially
motivated by the goal of treating these examples more systematically. The key invariant for doing
this is the symplectic cohomology. This is defined as the cohomology of a complex

(
⊕
σH

C · |σH |, d)

where H is a time dependent-Hamiltonian with controlled asymptotics at∞ and σH denotes the set
of time-one orbits of the Hamiltonian vector field XH . The differential involves counting solutions
to a perturbed J-holomorphic curve equation with prescribed asymptotics. Given the perturbed
nature of the equation, it is very hard to compute directly— the only complete computations for
affine varieties are for simple cases like C∗, C and products. By Hironaka’s resolution of singularities
theorem, for X an affine algebraic variety, there is a projective algebraic manifold M , and an ample
normal crossings divisor D = ∪Di, i ∈ {1, · · · , k}, such that M −D∼= X. Consider the cochain
complex:

C∗log(M,D) :=
⊕

I⊂{1,...,k}

t~vIC∗(S̊I ,k)[ti | i ∈ I] (2)

Here ~vI ∈ (N)k is the vector (v1, . . . , vk),

vi :=

{
1 i ∈ I
0 otherwise.

7this may hold for any log CY pair for which all components are ample and all strata monotone; however for more
complicated NC compactifications we need a more sophisticated construction as considered below
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and S̊I is the open torus bundle to the stratum DI . In particular S̊∅ = X, and S̊I = ∅ if the
intersection ∩i∈IDi is empty. We state the main “meta conjecture”:

“Meta Conjecture.” 8 There is deformation ∂def of the singular cohomology differential on
C∗log(M,D) defined in terms of relative GW invariants of the pair (M,D) such that the complex

(C∗log(M,D), ∂def ) computes symplectic cohomology.

Our approach to obtaining a precise statement and proof of this Meta Conjecture requires two
steps. The first is a geometric one which is largely independent of counting pseudo-holomorphic
curves, and the second step involves “virtual counting techniques” which enables us to construct the
above deformation. In the first step, which is joint work with Sheel Ganatra, we consider the case
when moduli spaces of relative holomorphic curves are empty for geometric reasons. To describe it
set

H∗log(M,D) := H∗(C∗log(M,D)) (3)

Namely, we define a linear subspace of admissible classes H∗log(M,D)ad ⊂ H∗log(M,D) and show

that [GanPom]

Theorem 2.9. [GanPom] There is a canonical map 9:

PSS+
log : H∗log(M,D)ad → SH∗+(X) (4)

This map is defined by counting pseudoholomorphic thimbles with tangency conditions along D.

Our construction is inspired by a map introduced by Piunikhin, Salamon, and Schwarz [PiuSalSch]
relating the (quantum) cohomology ofM and the Hamiltonian Floer cohomology of a non-degenerate
Hamiltonian. For algebraic geometers, it may be helpful to view this construction as giving, cur-
rently in special cases where transversality can be achieved, symplectic analogues of the theta
functions of [GroHacKee].

There is a wide class of topological pairs (M,D) for which the map (4) is particularly well
behaved. The key feature of such pairs is that the relevant moduli spaces of relative pseudo-
holomorphic curves are all generically empty. A typical example of a topological pair is the case
where M is any projective variety and D is the union of at least n+ 1 generic hyperplane sections,
where n = dimC(M). In the topological case, we have H∗log(M,D)ad = H∗log(M,D) and moreover

there is a canonical lifting of (4) to a Log PSS morphism

PSSlog : H∗log(M,D)→ SH∗(X) (5)

When the pair (M,D) is not topological, we formulate the obstruction to lifting a given admissible
class to SH∗(X) in terms of a Gromov Witten invariant. When this obstruction vanishes, this
provides a way to produce distinguished classes in SH∗(X) which we will show may be applied
to study the symplectic topology of X. Our obstruction theory is inspired by the above meta
conjecture and can be viewed as an elementary special case of this conjectural theory.

The existence of this map has some interesting consequences for symplectic topology. Let h(w)
be a generic Laurent polynomial in n − 1-variables and Zo ↪→ (C∗)n−1 denote the zero locus of
h(w). Set X to be the conic bundle given by

X = {(u, v,w) ∈ C2 × (C∗)n−1|uv = h(w)} (6)

For simplicity, we assume that Z0 is connected. The symplectic topology of these varieties (and
the closely related conic bundles over Cn−1) is very rich and can be approached from different

8This statement is not a precise conjecture for many reasons, for example it is likely better to use a Cech model for
singular cohomology
9SH∗+ is the cohomology of a certain canonically defined quotient of the complex defining SH∗
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perspectives, see for instance [AbouAurKat, Sei2]. For example, there is a standard construction
of Lagrangian spheres in X given by taking a suitable Lagrangian disc j : Dn−1 → (C∗)n−1 with
boundary on the discriminant locus and “suspending” it to a Lagrangian Sn ↪→ X [GroMat, Sei1].

It is natural to ask: what are the possible topologies of exact Lagrangians in these conic bundles?
The suspension construction typically provides a rich collection of Lagrangian spheres and Seidel
[Sei2] has provided constructions of exact Lagrangian tori in certain examples. Our first application
is a relatively complete classification of the diffeomorphism types of exact Lagrangian submanifolds
in three dimensional conic bundles over (C∗)2.

Theorem 2.10. [GanPom] Let X be a three-dimensional conic bundle over (C∗)2 of the form
(6), and let Q ↪→ X be a closed, oriented, exact Lagrangian submanifold of X. Then Q is either
diffeomorphic to T 3 or #nS

1 × S2 (by convention, the case n = 0 corresponds to S3).

By combining our methods with those from [Sei3], we also prove the following result concerning
disjoinability of Lagrangian spheres:

Theorem 2.11. [GanPom] Let k be a field and n ≥ 3 be an odd integer. Suppose that X is a conic
bundle of the form (6) of total dimension n over (C∗)n−1 and that Q1, · · · , Qr is a collection of
embedded Lagrangian spheres which are pairwise disjoinable. Then the classes [Q1], · · · , [Qr] span
a subspace of Hn(X,k) which has rank at least r/2.

We now turn to the natural question of when the map (5) is an isomorphism. In work in
preparation with Ganatra we expect to prove that:

Theorem 2.12. [GanPom3] There is a multiplicative 10 spectral sequence

H∗log(M,D) => SH∗(X) (7)

For topological pairs, this spectral sequence degenerates and the map (5) is an isomorphism of rings.

This provides a wide class of new calculations of symplectic cohomology rings. A proof of
Theorem 2.12 in the simplest case when D = D is a smooth divisor appears in [GanPom2].
This already produces a large class of new examples of symplectic cohomology rings. The normal
crossings case is much more involved, but the important ingredient here is McLean’s paper [McL]
to develop a convenient model for symplectic cohomology. In a neighborhood of the compactifying
divisors, McLean constructs a contact manifold whose Reeb flow orbits maybe identified with the
above S̊I .

11

An elaboration of McLean’s techniques enables one to produce a Hamiltonian adapted to the
compactification which forthcoming work of Borman and Sheridan [BorShe] show may be used
to compute SH∗(X). 12 Their adapted Hamiltonians give us enough control to produce a local
solution to the PSS equation which enables us to prove the map is an isomorphism. Using the
above theorem, we may also easily give an answer to the first part of Question 1.1 for a wide class
of pairs :

Corollary 2.13. [GanPom3] For any pair (M,D) which is log CY or log general type, the SH∗(X)
is a finitely generated ring.

Now we turn to the “virtual part” of the story which will enable us to plug back in the pseudo-
holomorphic curves which are absent for topological pairs. Our main tool here shall be recent work
of Pardon [Par1], who develops a beautiful and flexible framework of implicit atlases for equipping

10the multiplicative structure on H∗log(M,D) is defined by a simple topological formula
11McLean must first deform the divisors to be symplectically orthogonal in order to achieve this
12This is one of the steps which is immediate in the case D= D, but which requires more work in the normal crossings
case.
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moduli spaces of pseudoholomorphic curves with virtual cycles. Fix two multiplicities ~v1, ~v2 ∈ Nk.
By performing a heuristic bubbling off analysis for (virtual) dimension one components of all of
the moduli-space involved in defining the map PSSlog, it is not difficult to construct a moduli space
M(~v1, ~v2) of relative pseudoholomorphic curves which should govern the quantum corrections to
the differential on C∗log(M,D). To make this precise, we must answer:

Question 2.14. Can we construct a compactificationM(~v1, ~v2) ofM(~v1, ~v2) such thatM(~v1, ~v2)
has the structure of an implicit atlas with boundary?

This is again easiest in the case when D = D is smooth, when the compactification can be
constructed using SFT compactness. The construction of the implicit atlas structure in this case
reduces to a delicate gluing theorem, however there are similar gluing theorems in the literature
[Par2]. I have been discussing this gluing problem with Dan Cristofaro-Gardiner. In the normal
crossings case, there is much less literature to draw on, although based upon [Ion], we have a
conjectural picture for what one possible compactification may look like.

With Mark Gross, we have been working on writing down a version of the above complex,
SH∗alg(M,D), which essentially follows the above steps, but whose differential is defined com-
pletely algebraically. The idea of this project is to replace the above relative moduli counts with
Abramovich and Chen, Gross and Siebert’s theory of punctured invariants. Ongoing work of Gross
and Siebert constructs an algebraic version of SH0

alg(M,D) for all log-Calabi-Yau pairs using these
invariants and it seems likely that this construction can be modified to account for higher degree
symplectic cohomology classes as well (see page 5 of [GroSie] for related discussion). The main
question here is:

Question 2.15. For any log Calabi-Yau pair (M,D) can we construct a vector space SH∗alg(M,D),

which is a finite rank module over SH0
alg(M,D) and such that there is a spectral sequence

H∗log(M,D) => SH∗alg(M,D) (8)

Once this complex is written down, it is of course interesting to try to compare the algebraic
and symplectic versions of these theories. There are of course many fascinating examples that one
could explore, for example affine deformations of (multiplicative) quiver varieties, the examples of
[GonShe], or those considered in [GroHacKeeKon]. There also should be open string versions of
the above theory. Here it is reasonable to speculate that when X is log Calabi-Yau, the wrapped
Fukaya category WFuk(X) is a Calabi-Yau category over SH0(X) in the sense of [BezKal].

2.2.2. SYZ mirror symmetry for local Calabi-Yau varieties. The Strominger-Yau-Zaslow(SYZ)
programme is a comprehensive approach to understanding both the construction of mirror pairs
and Kontsevich’s HMS conjecture systematically. In joint work with Kwokwai Chan and Kazushi
Ueda [ChaPomUed], we began the implementation of the SYZ programme in the case when X
is a smoothing of the conifold singularity, the hypersurface defined by the equation xy − zw = 1.
This example has been a very important one throughout the development of the subject.

Starting from a special Lagrangian fibration on X → R3, we use wall-crossing techniques to
construct the mirror X̌ as a certain open subvariety of the total space of the vector bundle Y :=
Tot(O(−1)⊕O(−1))→ CP 1. We then construct Lagrangian sections Li of the SYZ fibration and
certain Lagrangian S3, Si which fiber over a affine interval of the SYZ base. We prove the following
theorem:

Theorem 2.16. [ChaPomUed] The SYZ transform of Li is O(i) and the SYZ transform of Si
is OCP 1(−i).

We then compute wrapped Floer homology for these Lagrangians. More precisely, we prove the
following theorem:
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Theorem 2.17. [ChaPomUed] The SYZ transform gives rise to fully-faithful embeddings

DbCoh(X̌)→WFuk(X) DbCohCP 1(X̌)→ Fuk(X)

We expect that these Lagrangian sections generate the wrapped Fukaya category, which would
provide a complete proof of homological mirror symmetry in this example.

It is interesting to consider the conic bundles X from (6) from this perspective as well. Namely,
recent work of Abouzaid-Auroux-Katzarkov has enabled us to revisit these examples from the point
of view of the Strominger-Yau-Zaslow conjecture 13. There is a canonical S1 action on X. Let µ
denote the moment map. We can write down symplectomorphisms:

φµ : Xµ/S
1 → (C∗)n

(log|φµ|, µ) : X → Rn × R
The SYZ mirror can be constructed using wall-crossing techniques and determined to be an open

subset of a toric variety Y whose affinization is described by the cone over the Newton polytope of
f(z1, · · · , zn). The toric variety Y is given by a polarized unimodular triangulation of the Newton
polytope, which is equivalent to a choice of tropical degeneration for the hypersurface defined by
f(z1, · · · , zn) = 0. Finally, Y is equipped with a canonical regular function h : Y → A1 which
vanishes to first order along each of the toric divisors. The main result of Abouzaid, Auroux,
Katzarkov [AbouAurKat] is the following theorem:

Theorem 2.18. X̌ is isomorphic to Y \ h−1(1).

Remark 2.19. In unpublished work, we have also used the techniques of Abouzaid, Auroux,
Katzarkov to construct mirrors to hypertoric varieties, e.g. hyperkahler quotients of the form
Cn///Td. Namely, on any hypertoric variety X there is a complementary Tn−d which acts sym-
plectically on X. We have an indentification

µC : X//Tn−d ∼= Cn−d

given by the algebraic moment map. Using the approach of Abouzaid, Auroux, Katzarkov, we
can construct an SYZ fibration and construct a mirror X̌. All of the questions raised in this section
have analogues for these examples as well.

In joint work ’with Chan and Ueda [ChaPomUed2] , we have used the methods of [Abou2]
to construct Lagrangian sections Lσ, whose Hamiltonian isotopy classes are in bijection with line
bundles on the toric variety Y as well as Lagrangian spheres Sσ which are fibered over bounded
components of the complement of the tropical amoeba Rn −Π and are in bijection with the push-
forwards of line bundles from the corresponding compact divisor. We describe a version of wrapped
Floer theory, WF ∗ad(L,L), where L is a certain class of admissible Lagrangians, using certain
admissible Hamiltonians Had. These Hamiltonians are modelled on pullbacks of a proper convex
function on the base:

H : Rn × R→ R
Our main theorem is the following theorem:

Theorem 2.20. [ChaPomUed2] Let L0 be the zero section of the fibration, There is an isomor-
phism

WF ∗ad(L0, L0) ∼= Γ(OX̌) (9)

13In the SYZ mirror construction, the variety X is equipped with a modified S1 invariant symplectic form, which
is symplectomorphic to the standard symplectic form restricted from affine space. We shall surpress this technical
point from our discussion.
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Furthermore there is an isomorphism WF ∗ad(L0, L0) ∼= WF ∗(L0, L0), where WF ∗(L0, L0) is the
standard wrapped Floer cohomology.

The wrapped Floer cohomology ring on the left hand side of (9) comes with a natural basis
given by Hamiltonian chords. As suggested by Tyurin and emphasized by Gross, Hacking, Keel,
the images of these Hamiltonian chords on the right hand side of (9) give generalizations of theta
functions on abelian varieties. We use this result to calculate the zero-th symplectic cohomology
SH0(X) of X. Abouzaid [Abou1] has introduced a map

CO : SH0(X)→WF 0(L0). (10)

We prove the following theorem:

Theorem 2.21. [ChaPomUed2] The map (10) is an isomorphism.

Finally, we apply all of these calculations to give a proof of homological mirror symmetry in the
simplest case when our polynomial h(w1, w2) is 1 +w1 +w2 (this corresponds to the case when the
mirror X̌ is Spec(C[x, y, z][(xyz − 1)−1])).

Theorem 2.22. [ChaPomUed2] L0 generates the wrapped Fukaya category of Y . In particular,
there is an equivalence

ψ : DbWFuk(X) ∼= Dbcoh(X̌) (11)

of enhanced triangulated categories sending L0 to OX̌ .

We further generalize these calculations to finite covers, which correspond to taking finite quo-
tients on the mirror side using a type of McKay correspondence. This includes the case when the
toric variety Y = KP2 . An obvious question is:

Question 2.23. Can we use the SYZ picture to prove Homological Mirror Symmetry for more
general examples? In a different direction, can we use the SYZ picture to generalize Seidel and
Thomas’ work on symplectic mirrors to derived autoequivalences for more general toric Calabi-Yau
varieties?

Another interesting question which arises is:

Question 2.24. Can we understand the mirror to the derived McKay correspondence for three
dimensional crepant resolutions in symplectic terms?

In two dimensions, the picture is very clear, and I hope to extend this picture to these examples.

More generally, we expect to be able to construct Lagrangian submanifolds which are sections
of the SYZ fibration over each tropical cell of the tropical amoeba of the tropical limit of f . It
is easy to do this when the tropical hypersurface is a curve in R2. The SYZ transform of such
a Lagrangian is expected to be a line bundle supported on a lower dimensional toric stratum of
X̌. In view of what follows, it will also be important to extend our construct to include certain
spherically fibered co-isotropic branes associated to tropical subcomplexes. Recent advances in the
theory of variation of GIT quotients give rise to the construction of new derived autoequivalences of
DbCoh(X̌), the generalized spherical twists about coherent sheaves supported on lower dimensional
toric strata. The GIT quotient depends on a parameter θ, which is equivalent to the polarized
unimodular triangulation of the Newton polytope needed to construct the tropical degeneration
of the hypersurface. This suggests that these generalized spherical twists are mirror to fibered
Dehn twists about the Lagrangian (or co-isotropic) cycles constructed via tropical geometry. A
key ingredient in carrying out this work is a generalization for fibered Dehn twists of Seidel’s
long exact sequence due to Werheim-Woodward [WerWoo]. The simplest case is discussed in the
last section of [ChaPomUed], where the corresponding generalized spherical twists have been
computed explicitly by Segal and Donovan [DonSeg].
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2.3. Quantitative Weinstein conjecture. This final project is independent of all of the above
and is a new direction of research joint with Dan Cristofaro-Gardiner and Michael Hutchings. The
three-dimensional case of the Weinstein conjecture asserts that every contact form on a closed three-
manifold has at least one Reeb orbit. This was proved by Taubes in 2006. This result naturally
leads to the following question:

Question 2.25. What can one say about the number of simple Reeb orbits of a contact form on a
closed three-manifold?

Without any further assumptions on the contact manifold Y or the contact form λ, a definitive
result in this direction was proven by Cristofaro-Gardiner and Hutchings, who have shown that
there are at least two simple Reeb orbits. The lower bound of two is the best possible without further
assumptions, because there exist contact forms on S3 with exactly two simple Reeb orbits. One can
also take quotients of these examples by cyclic group actions to obtain contact forms on lens spaces
with exactly two Reeb orbits. In order to obtain stronger results, a standard assumption is that λ
is nondegenerate 14, in order to make direct connection with the powerful theory of holomorphic
curves in the symplectization Y × R 15. An important result in this direction is:

Theorem 2.26. (Hutchings-Taubes [HutTau]) Let Y be a closed three-manifold which is not S3 or
a lens space. Then every nondegenerate contact form on Y has at least three simple Reeb orbits.

Theorem 2.26 is proven using embedded contact homology (ECH) a three manifold invariant
which is defined using pseudoholomorphic curve theory. With Cristofaro-Gardiner and Hutchings,
we expect to prove the following major generalization of a result of Hofer-Wyzocki-Zehnder [HWZ2,
Cor. 1.10]:

Theorem 2.27. [CGHutPom] Let Y be a closed connected three-manifold and let λ be a nonde-
generate contact form on Y . Assume that c1(ξ), where ξ is the contact 2-plane field, is torsion in
H2(Y ;Z). Then there are either two or infinitely many simple Reeb orbits.

The first main idea of the argument is to study the asymptotics of ECH(Y, λ) to produce a
one-dimensional family of embedded genus zero curves C ⊂ Y which foliate Y \ ∪iγi, where γi is a
collection of Reeb orbits. The second key idea is to combine this with this results of [HWZ1] to show
that this gives rise to a global surface of section, which enables one to transfer dynamical questions
on Y to questions about fixed points of homeomorphisms of surfaces. From here, Theorem 2.27
follows from known results. Motivated by the main result of [CGHut], it is natural to ask:

Question 2.28. Can we remove the nondegeneracy hypotheses from Theorem 2.27?

Discussions with Cristofaro-Gardiner suggest that we may be able to. We may, as in [CGHut],
take a very small perturbation λf = (1 + f)λ with |f |C∞ small to make the contact form nonde-
generate. A more delicate version of the analysis involved in Theorem 2.27 may still show that one
obtains a suitable family of curves on Y by studying the ECH of the perturbed contact form. Work
of [HWZ1] seems to then provide the analytic foundations needed to construct a global surface of
section from these curve by taking the limit as |f |C∞ → 0.
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