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Remarks on symplectic cohomology of smooth divisor
complements

Sheel Ganatra and Daniel Pomerleano

Abstract. Let M be a smooth projective variety and D an ample simple normal crossings
divisor. Under “topological” assumptions on the pair (M,D), the authors have introduced
a map from a vector space which we term the logarithmic cohomology of (M,D) to sym-
plectic cohomology of the complement X = M\D [GP2]. In this short note, we prove that
a slight modification of this map is an isomorphism when D = D is a smooth divisor. This
enables us to compute the symplectic cohomology as a ring for any such pair. Using the
same techniques, we also compute SH0(X) as a ring for any pair with D = D a smooth
anticanonical divisor.

1. Introduction

Let M be a smooth projective variety and suppose that i : D → M is a smooth ample
divisor on M such that

KM
∼= O(−mD)(1.1)

for some m. Given such an embedding, we may associate a normal bundle to D inside
of M which we denote by π : ND → D. Equip M with a Kahler form ω corresponding
to a positive Hermitian metric on O(D). Denote by X := M \ D and the inclusion map
j : X → M . In such a situation, we can define a symplectic cohomology ring SH∗(X)
[FH,V,CFH]. The goal of the present note is to make (partial) computations of the ring
structure on SH∗(X) using the techniques of [GP2]. To state our main result, we fix our
ground ring to be a field of characteristic zero k. Consider the vector space

H∗log(M,D) := H∗(X)
⊕
v∈Z+

H∗(SD)tv(1.2)

The vector space H∗log(M,D) has a cohomological grading given by

|αtv| = |α|+ 2(1−m)v(1.3)

and a natural graded-commutative ring structure respecting this grading (see 2.2 for the
definition). In [GP2], we introduced the notion of a topological pair (M,D) 1 which enabled

1The definition introduced in that paper was for general simple normal crossings divisors and is slightly
weaker in the case of a single smooth divisor than that introduced here. However the analysis needed to
construct the PSS map carries over without any changes.
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us to define canonical classes in symplectic cohomology from classes in H∗log(M,D). This
short note is concerned with a map

PSSlog : H∗log(M,D)→ SH∗(X)(1.4)

which is a slight variant 2 of the map introduced in [GP2]. The main theorem of this note
is the following:

Theorem 1.1. Suppose that (M,D) is a topological pair. The map (1.4) is an isomor-
phism of rings.

It is worth emphasizing that the main interest of Theorem 1.1 is in the ring structure.
In most examples where Theorem 1.1 applies, the additive structure can be calculated using
more traditional spectral sequence methods. Forthcoming work of the authors [GP] will
prove a generalization of Theorem 1.1 to the simple normal crossings setting. In this note,
we limit ourselves to the smooth setting because it is technically simpler and still provides
a wealth of new examples.

As also remarked in [GP2], even outside of the topological setting, the PSS map may
still be used to define canonical elements in symplectic cohomology. For example, when
m = 1 and k = C, Kontsevich’s homological mirror symmetry conjecture predicts (in
somewhat simplified terms) that there is a mirror partner to X, X∨, which admits a proper
algebraic map

s1 : X∨ → A1
k(1.5)

Theorem 1.2. There are canonically defined elements sv together with an isomorphism

PSSlog :
⊕

v∈N≥0

k · sv ∼= SH0(X,k)(1.6)

Moreover as a ring we have that

k[s1] ∼= SH0(X,k).(1.7)

This theorem could be read as saying that “degree zero piece of (1.4) is still defined
and an isomorphism.” It is worth noting that in this case, even the additive result does
not seem to be achievable by purely spectral sequence theoretic techniques. Regarding
the multiplicative structure, we warn the reader that the map (1.7) does not agree with
the obvious map sending sv → (s1)v. In fact, this isomorphism contains rich enumerative
geometry, worthy of further exploration. More precisely, the elements sv correspond to
canonically defined degree v polynomials.

It is not difficult to see from our construction that the coefficients of these polynomials
are likely defined in terms of certain generalizations of relative Gromov-Witten invariants
of the pair (M,D). Proving this rigorously, however, would depend on suitable forms of
transversality and gluing that go beyond the scope of the present note. We give some
demonstrations of this in elementary examples where such transversality results can be
shown to hold.

Though these results are certainly within the range of other approaches, notably the
long-term project [D, DL], we hope that this note illustrates how such calculations can
be cleanly performed using the techniques of [GP2]. To compute SH∗(X) for arbitrary
pairs (M,D) satisfying (1.1) one needs sufficiently strong transversality and gluing results

2In this note, we use slightly different families of Hamiltonian functions in our construction. We expect
the two constructions to coincide, however we do not address this.
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to modify H∗log(M,D) so that (1.4) is well-defined. From there, it seems likely that the
arguments from Section 3 should carry over without essential difficulty.

2. Symplectic cohomology and log PSS map

The bundle π : ND → D has a natural Hermitian structure and we let SD denote the
associated circle bundle. Let r denote the radial coordinate on ND. The induced linear-
connection on ND gives rise to a decomposition into horizontal and vertical pieces, that is
to say for any point p ∈ ND, we have a decomposition

TpND = TpH ⊕ TpV(2.1)

where we have an identification

TpV ∼= TC(2.2)

Let ωD denote the restriction of the symplectic form ω to D. Let θ be the trangression
one-form on ND which is compatible with the Hermitian structure i.e. such that for any
point p we have that

dθ|TpH = −π∗(ωD).(2.3)

For a fixed δ > 0, let UD2δ denote the open subset of ND where r ≤ 2δ. For δ sufficiently
small, the symplectic tubular neighborhood theorem gives an identification ψ : UD2δ →
U ⊂M with Dψ|D = Id and such that

ψ∗(ω) =
1

2
dr2θ + π∗ωD

where r is the radial coordinate on UD2δ. Observe that we may write ψ∗(ω) = dθ̂, where

θ̂ = (1
2r

2 − 1)θ. We now proceed with the definition of the symplectic cohomology group
SH∗(X). For some fixed r0 ≤ 2δ, we will denote the region of U where r ≤ r0 by Ur0 .
Choose ε << δ. Consider a function h(r2) : U → R≥0 such that h(r2) = c − 1/2r2 for
0 < c << 1 on Uε and which vanishes in U \ Uδ.

Definition 2.1. For any slope λ ≥ 0, we say that a Hamiltonian Hλ : M → R has
slope λ if Hλ = λh(r2) on Uε.

It follows that in Uε, the Hamiltonian vector field

XHλ = −λ∂θ(2.4)

Definition 2.2. For any open set U ′ ⊂ U , we say that a compatible almost complex
structure J on M is split inside of U ′ if

• it respects the decomposition 2.1 at each point p ∈ U ′.
• π : U ′ → D is holomorphic for some ωD-compatible holomorphic structure on D.
• furthermore under the identification 2.2 the complex structure goes to the standard

complex structure.

Definition 2.3. We say that a compatible almost complex structure J ∈ J(M) is ad-
missible at infinity if it is split inside of Uε. We denote the space of such complex structures
by Jc(M,D).

Definition 2.4. We say that a pair (M,D) is topological if for generic J ∈ Jc(M,D)

• there are no non-constant J-holomorphic spheres entirely contained in D and
• every J-holomorphic sphere intersects D in at least three points.
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Set X̄ = X \ Uδ. For any Hamiltonian function H : S1 × X → R, a fixed point of a
time-one flow of the Hamiltonian vector field XH associated with H is called a time-one
Hamiltonian orbit of H. The set of time-one Hamiltonian orbits of H will be denoted
by X(X;H). In the specific case under investigation, we work with generic λ so that
there are no time one orbits of Hλ inside of Uε. We may choose a small S1-dependent
perturbation Hpert

λ : S1 × X → R supported in a neighborhood of the union of all time-
one Hamiltonian orbits of Hλ, so that any time-one Hamiltonian orbit of the perturbed
Hamiltonian Hλ,t := Hλ + Hpert

λ is non-degenerate. We will need to impose slightly more
structure on Hλ for our intended applications. Namely, we will assume that

• Hλ = 0 on X̄
• On U , Hλ = h(r2) with h′(r2) ≤ 0
• h′′(r2) ≥ 0.

After appropriately choosing Hλ, we may assume that the orbits of Hλ in X come in
isolated families of two types:

• constant orbits F0 in X
• orbit sets Fd which are isomorphic to SD which around the divisor d times for

1 ≤ d < λ.

We may assume choose isolating sets U0 and Ud assume that our functions

Hpert
λ =

∑
i

τHpert
i(2.5)

where Hpert
i are ”Morse-Bott” perturbations supported in Ud and U0 respectively and τ

is sufficiently small. Let X0(X;Hλ,t) and Xd(X;Hλ,t). Notice that Hλ, when viewed as a
function on all of M , has constant orbits along D. We refer to these orbits as degenerate
orbits.

The Floer cochain complex is defined by

CF∗(X;Hλ,t) :=
⊕

x∈X(X;Hλ,t)

|ox|k,(2.6)

where |ox|k is the k-orientation line on the real vector space ox of rank one associated with
x ∈ X(X;Hλ,t). Fix a choice JF : [0, 1] → Jc(M,D). The differential involves the count of
maps u : R× S1 → X, asymptotic to x± at ±∞ satisfying a PDE called Floer’s equation:

u : R× S1 → X,

lim
s→−∞

u(s,−) = x0

lim
s→+∞

u(s,−) = x1

∂su+ JF (∂tu−XHλ,t) = 0.

(2.7)

Denote by

(2.8) M̃(x0, x1)

the moduli space of Floer trajectories between x0 and x1, or solutions to (2.7). For generic
JF , (2.8) is a manifold of dimension

deg(x0)− deg(x1)
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where deg(x), the index of the local operator Dx associated to x, is equal to n − CZ(x),
where CZ(x) is the Conley-Zehnder index of x. The choice of Hλ and Jt near ∞ ensures
that an integrated maximum principle (Lemma 2.5) holds for solutions to Floer’s equation.

The maximum principle ensures that such solutions remain in X \Uε, A suitable version
of Gromov compactness then ensures that for generic choices, whenever deg(x0)−deg(x1) =

1, the moduli space M(x0, x1) := M̃(x0, x1)/R is compact of dimension 0. Moreover, orien-
tation theory associates, to every rigid element u ∈M(x0, x1) an isomorphism of orientation
lines µu : ox1 → ox0 and hence an induced map µu : |ox1 |k → |ox0 |k. Using this, one defines
the |ox1 |k − |ox0 |k component of the differential

(2.9) (∂CF )x1,x0 =
∑

u∈|M(x0,x1)/R|

µu

whenever deg(x1) = deg(x0) + 1. In a similar vein, for any λ1 ≥ λ2, we have continuation
maps (canonically defined on the level of cohomology)

κλ1,λ2 : HF ∗(X,Hλ1,t)→ HF ∗(X,Hλ2,t)

Define

SH∗(X) := lim−→
λ

HF ∗(X,Hλ,t).(2.10)

It is an easy special case of the results of section 4 and the discussion preceeding the
proof of Lemma 6.8 of [M] (see also the discussion in Section 10 of [S]) that this agrees
with the standard definition of SH∗(X) as defined in [V]. The final bit of structure we will
need for the moment is the existence of a product operation on symplectic cohomology.
Recall that a negative cylindrical end, resp. a positive cylindrical end near a puncture x of
a Riemann surface Σ consist of a holomorphic map

ε− : (−∞, 0]× S1 → Σ(2.11)

resp. a holomorphic map

ε+ : [0,∞)× S1 → Σ(2.12)

asymptotic to x. Let Σ be a Riemann surface equipped with suitable cylindrical ends εi. To
each cylindrical end associate a time dependent Hamiltonian Hi. Let K ∈ Ω1(Σ, C∞(X))
be a 1-form on Σ which, along the cylindrical ends, satisfies:

ε∗i (K) = Hidt

whenever |s| is large. To such a K, we may associate a Hamiltonian one form XK ∈
Ω1(Σ, C∞(TX)) which is characterized by the property that for any tangent vector at a
point z ∈ Σ, ~rz, we have that XK(~rz) is the Hamiltonian vector-field of K(~rz). The most
general form of Floer’s equation that we will be studying in this paper is:{

u : Σ→ X,

(du−XK)0,1 = 0.
(2.13)

To define the pair of pants product, let Σ be the pair of pants, viewed as a sphere
minus three points. Labeling the punctures of Σ by x1, x2 and x0, we equip Σ with positive
cylindrical ends around x1 and x2 and a negative end around x0. We fix the following
additional data on Σ:
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• a (surface-dependent) family of admissible J . Further, when restricted to cylindri-
cal ends J should depend only on t.
• a closed 1-form β, which when restricted to the the negative cylindrical end equals

2dt and when restricted to the positive cylindrical ends equals dt.
• A perturbation one-form K restricting to Hλ,tdt on the positive ends and H2λ,tdt

such that outside of a compact set on X, XK = XHλ,t ⊗ β.

To define the pair of pants product,

(− · −) : HF ∗(X,Hλ,t)⊗HF ∗(X,Hλ,t)→ HF ∗(X,H2λ,t)(2.14)

we count solutions to Equation (2.13) such that

u : Σ→ X,

lim
s→−∞

u(s,−) = x0

lim
s→∞

u(s,−) = x1

lim
s→∞

u(s,−) = x2

(2.15)

We finish this section by recording the precise version of the integrated maximum prin-
ciple that we need. Its proof is a variant of the arguments in [AS]. Associated to a solution
of Floer’s equation (2.13) are two types of energies, the topological energy

(2.16) Etop(u) =

∫
Σ̄
u∗ω − d(u∗K)

and the geometric energy

(2.17) Egeo(u) :=
1

2

∫
Σ̄
||du−XK || = Etop(u) +

∫
Σ̄

ΩK

where the curvature ΩK of a perturbation datum K is the exterior derivative of K in the
Σ direction.

Lemma 2.5. Let Σ̄ be a compact Riemann surface with boundary and β be a subclosed
one form. Let u: Σ̄ → Uε be a solution to Floer’s equation (2.13) with K = Hλ ⊗ β such
that u(∂Σ̄) ⊂ ∂Uε. Then u(Σ̄) ⊂ ∂Uε and du−XH ⊗ β = 0.

Proof. We compute for such u that the topological energy Etop(u) satisfies

Etop(u) =

∫
Σ̄
u∗ω − d(u∗Hλ ⊗ β)(2.18)

=

∫
∂Σ̄
u∗θ̂ − u∗Hλ ⊗ β(2.19)

=

∫
∂Σ̄

(u∗θ̂ − θ̂(XHλ)β) +

∫
∂Σ̄
λ(1− c)β(2.20)

≤
∫
∂Σ̄

(u∗θ̂ − θ̂(XHλ)β)(2.21)

= −
∫
∂Σ̄
θ̂ ◦ J ◦ (du−XHλ ⊗ β) ◦ j(2.22)

=

∫
∂Σ̄

1− r2

r
dr ◦ du ◦ j,(2.23)
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Finally, letting n̂ denote the outward normal along ∂nΣ, observe that ∂nΣ is oriented by
the vector jn̂. Now we calculate that dr(du)j(jn̂) = dr(du)(−n̂) ≤ 0, which implies that
the final integral, hence Etop(u), is non-positive. This implies, because β is subclosed, that
Egeo(u) ≤ 0, so du = XK everywhere and in particular, r must be constant on u(Σ̄). �

2.1. Log PSS morphism. We recall the method from [GP2] to construct canonical
elements in symplectic cohomology. In this section, we suppose that (M,D) is a topological
pair. Consider the domain S = CP 1 \ {0}, thought of as a punctured sphere, with a
distinguished marked point z0 = ∞ and a negative cylindrical end near z = 0 which for
concreteness we take to be given by

(s, t)→ es+it

The coordinates (s, t) extend to all of S \ z0. Fix a subclosed one-form β which restricts to
dt on the cylindrical end and which restricts to zero in a neighborhood of z0. To be explicit,
we consider a non-negative, monotone non-increasing cutoff function ρ(s) such that

(2.24) ρ(s) =

{
0 s� 0

1 s� 0

and let

(2.25) β = ρ(s)dt.

Definition 2.6. For a fixed pair of complex structures J0 ∈ Jc(M,D) and JF , we let
JS(J0, JF ) denote the space of complex structures:

JS ∈ C∞(S, Jc(M,D))(2.26)

such that in a neighborhood of z0, we have that JS = J0 and such that along the negative
strip-like end we have that JS = JF .

Near z0, we also fix a distinguished tangent vector which points in the positive real
direction. For each α ∈ H∗(X̄, ∂X̄), fix a relative pseudocycle representative [K] αc such
that ∂αc ⊂ ∂X̄. For any such pseudocycle, and orbit x0 in X(M ;Hλ,t) (possibly degenerate),
choose a surface dependent almost-complex structure JS ∈ JS(J0, JF ).

Definition 2.7. For any orbit x0 ∈ X(M ;Hλ,t), we define MM (x0) as the space of
solutions to

u : S →M

satisfying

(2.27) (du−XHλ,t ⊗ β)0,1 = 0

with asymptotic condition

(2.28) lim
s→−∞

u(ε(s, t)) = x0

For any x0 ∈ X(X;Hλ,t), consider those u ∈ MM (x0) such that u(S) ⊂ X and denote

this moduli space by M̊M (x0). Next form

M(αc, x0) := M̊M (x0)×evz0 αc(2.29)
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For generic choices of JS , this is a manifold of dimension |x0|−|α| provided that |x0|−|α| ≤ 1.
A standard orientation analysis shows that whenever |x0| − |α| = 0, (rigid) elements u ∈
M(αc, x0) induce isomorphisms of orientation lines

µu : R→ ox0 .

Thus, we can define:

PSS0(P ) =
∑

x0,|x0|−|α|=0

∑
u∈M(αc,x0)

µu.(2.30)

Furthermore, given a generic relative null-bordism Zb for a pseudo-manifold αc, we have
that

∂CF ◦PSS0(Zb) = PSS0(αc).(2.31)

It is a classical fact that this count gives rise to a well-defined map:

PSS0 : H∗(X̄)→ HF ∗(X,Hλ)(2.32)

The map PSSlog is an enhanced version of the classical PSS morphism, involving curves
passing through cycles not necessarily in X but at ∞ (D), with various incidence and
multiplicity conditions. Let v be a multiplicity in Z+.

Definition 2.8. Fix J0 , JF and JS ∈ JS(J0, JF ). For every orbit x0 ∈ X(X;Hλ,t) and
v as above, define a moduli space

(2.33) M(v, x0)

as follows: consider the space of maps

u : S →M

satisfying (2.27), (3.18) and tangency/intersection conditions

u(z) /∈ D for z 6= z0;(2.34)

u(z0) intersects D with multiplicity v .(2.35)

In the setting of (3.19), the real-projectivized v normal jets of the map u (with respect
to a fixed real tangent ray in Tz0C) give an enhanced evaluation map

(2.36) Evv
z0 : M(v, x0)→ SD.

For each α ∈ H∗(SD), fix a pseudocycle representative αc.

Definition 2.9. The moduli space M(v, αc, x0) is defined to be the moduli space

M(v, x0)×Evv
z0
αc,(2.37)

As is shown in Lemma 4.10 of [GP2], the virtual dimension of M(v, αc, x0) is given by

(2.38) vdim(M(v, αc, x0)) = |x0| − |αtv|,
For a generic choice of almost complex structure and when vdim(M(v, αc, x0)) ≤ 1, the

moduli space is a manifold of the expected dimension by standard arguments(see Lemma
4.16 of [GP2], which is in turn an adaptation of Lemmas 6.5-6.6 of [CM]). For λ > v, we
define:

(2.39) PSSλlog(αct
v) =

∑
x0,vdim(M(v,αc,x0))=0

∑
u∈M(v,αc,x0)

µu ∈ HF ∗(X,Hλ,t)
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where once more, for a rigid element u ∈ M(v, αc, x0), µu : R → ox0 is the isomorphism
induced on orientation lines (and by abuse of notation, their k-normalizations) by the
gluing theory. The key point is the following, which is a small modification of Lemma 4.13
of [GP2](see also Lemma 7.1 of [S])

Lemma 2.10. We have that ∂CF ◦ PSSλlog(αct
v) = 0

Proof. To prove this, we need to show that, when the dimension is one, the moduli
space M(v, αc, x0) admits a compactification (in the sense of Gromov-Floer convergence)
M(v, αc, x0), such that:

∂M(v, αc, x0) =
⊔

x,|x0|−|x′|=1

M(v, αc, x
′)×M(x0, x

′)

To do this, because M is compact, we may apply standard Gromov-Floer compactness.
As there is no sphere bubbling, we only have to rule out PSS solutions breaking along a
degenerate orbit y. Then have that the limiting u breaks into two curves (u1, u2) where u1

is an element of MM (y) and u2 is a non-trivial Floer trajectory in M(x0, y). To rule this
out, observe that by the maximum principle, we must have that u1 lies entirely in D. In
particular, we observe that we must have∫

S
u∗1ω ≥ 0.(2.40)

We now show that u2 cannot exist by energy considerations. Namely, let r be the bundle
coordinate on U and we consider the slice where r = ε as before. Along this slice, recall
that we have that

H = λ(c− r2)(2.41)

Consider the piece of this Floer trajectory, which lives above r = ε. We have that the energy
of S̄ = u−1(Uε) of this piece of the curve for the symplectic form ω can be estimated by

E(S̄) ≤ v − cλ+

∫
∂S̄

(u∗θ̂ − (Hβ))(2.42)

= v − cλ+

∫
∂S̄
u∗θ̂ − θ̂(X)β +

∫
∂S̄

(λ(1− c)β)(2.43)

≤
∫
∂S̄
u∗θ̂ − θ̂(X)β(2.44)

And the rest proceeds as we have seen previously. As a result we have that the moduli
space is compact. �

For any λ > 0, set

H≤λlog (M,D) := H∗(X)
⊕
v≤λ

H∗(SD)tv(2.45)

Parallel to Lemma 4.26 of [GP2], the formula (2.39) is independent of the choice of pseu-
docycle, giving rise to a well-defined map

PSSλlog : H≤λlog (M,D)→ HF ∗(X,Hλ,t)(2.46)
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Moreover, this map is compatible with continuation maps by the argument of Lemma 4.24
of [GP2], giving rise to a map

PSSlog : H∗log(M,D)→ SH∗(X)(2.47)

2.2. PSS is a map of rings. To define the ring structure on H∗log(M,D), first observe

that the identification ψ gives rise to a natural identification ψb : SD ∼= ∂X̄.

Definition 2.11. We define the ring structure on H∗log(M,D) to be the unique (graded-)
commutative ring structure such that

• The natural inclusion H∗(X)→ H∗log(M,D) is ring homomorphism.

• For α1 ∈ H∗(X), α2 ∈ H∗(SD) and v 6= 0, we have

α1 · α2t
v = (ψ∗b (α1) ∪ α2)tv(2.48)

• Finally, for α1, α2 ∈ H∗(SD)

α1t · α2t = (α1 ∪ α2)t2(2.49)

• For α ∈ H∗(SD), and v not equal to zero, then

[SD]t · α1t
v = α1t

v+1(2.50)

The third and fourth bulleted relations above can be replaced by the slightly cleaner
relation that for α1t

v1 , α2t
v2 with both v1,v2 6= 0, then

α1t
v1 · α2t

v2 = α1 ∪ α2t
v1+v2(2.51)

However, the presentation we give is slightly simpler for comparing ring structures to
symplectic cohomology. The argument that the PSS map defined above preserves the ring
structure follows a standard pattern in TQFT. Namely, we work over a parameter space
q ∈ (0, b] with b > 0 close to zero. We again consider the surface Sq,2 = CP 1 \ {0}, with
a negative cylindrical end as before, but this time with two distinguished marked points at
z1 = −1/q and z2 = ∞. For this argument it will also be convenient to set w = z−1. We
consider a subclosed one form β which satisfies

• The form β restricts to 2dt on the cylindrical end
• β = 0 in balls surrounding w(z1) = −q and w(z2) = 0.

We equip each of these points asymptotic markers, in the negative real direction at z1

and in the positive real direction at z2. Next, define a moduli space Mq(v1,v2;x0) of pairs
(q, u), with q ∈ (0, b] and

u : Sq,2 →M

as usual satisfying

(2.52) (du−XHλ,t ⊗ β)0,1 = 0

with asymptotic condition

(2.53) lim
s→−∞

u(ε(s, t)) = x0
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and tangency/intersection conditions

u(x) /∈ D for x 6= zi;(2.54)

u(z1) intersects D with multiplicity v1.(2.55)

u(z2) intersects D with multiplicity v2 .(2.56)

Where we understand that vi = 0 means that the curve does not pass through D at
zi. If one of the vi = 0, we choose pseudocycles αi representing classes in H∗(X̄, ∂X̄) and

extend these R∗ invariantly over X \ X̄ ∼= Ůδ \D. Otherwise we simply take a αi to be a
pseudocycle on SD.

Theorem 2.12. We have that

PSSlog(α1t
v1 · α2t

v2) = PSSlog(α1t
v1) · PSSlog(α2t

v2)(2.57)

Proof. In view of the defining relations given in Definition 2.11, it suffices to consider
the cases where

(1) v1 = 0
(2) v1 = v2 = 1
(3) v1 = 1, α1 is the fundamental cycle on SD.

Consider the moduli spaces

Mq(v1,v2;α1, α2;x0) := Mq(v1,v2;x0)×Ev α1 ×Ev α2(2.58)

which for generic choices is a moduli space of the expected dimension. Suppose first
that we are in case (1) above with v1 = 0. If v2 = 0 it is well known that the classical
PSS morphism is a ring map, so assume that v2 > 0. When the moduli space (2.58) has
dimension one, we claim that it may be completed over q → 0 to a one dimensional manifold
with boundary whose fiber over q = 0 is given by

M(v1 + v2, ψ
−1
b (α1 ∩ ∂X) ∩ α2, x0)(2.59)

To see, this consider a sequence of curves with uq, q → 0. Since there is no bubbling,
the limiting is a curve u0 : S → M which intersects D at exactly one point u0(z0) with
a constant sphere bubble glued on at z0. Choose a small open set W of D about u0(z0)
together with a trivalization

` : W × C ∼= ND|W(2.60)

Let UW be UDε∩π−1(W ). Identifying UW with its image under ψ, we have that there is an
open set US ⊂ S with w = −q, 0 ⊂ US such that uq(US) ⊂ UW for q sufficiently small. In
view of (2.60), we have that UW comes equipped with a projection πC : UW → C. Consider
the maps ūq = πC ◦ uq : US → C. We have

ūq = aq(w)v2 +O(|w|v2+1)(2.61)

by Lemma 3.4 of [IP] with aq 6= 0. Moreover, we have that

Evz2(uq) = ([aq], π ◦ u(0)) ∈ α2(2.62)

Writing uq(z1) = (ūq(z1), π ◦ u(z1)), we have that

uq(z1) = (aqq
v2 +O(qv2+1), π ◦ uq(z1)) ∈ α1(2.63)
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Because there is no bubbling, C∞ convergence of the maps uq imply that that aq → a0 and
limq→0 ū(z2)/qv2 → a0. It follows that

Evz0 = ([a0], π ◦ u(0)) ∈ ψ−1
b (α1 ∩ ∂X) ∩ α2(2.64)

To go the other direction is an elementary gluing result which follows the arguments of
Chapter 10 of [MS] quite closely and which we regard as standard. It remains to consider
the remaining cases when v1 = 1, and either v2 = 1 or α1 = [SD]. Let us consider case (2)
first. In the limit, we have that π ◦ u(w) = b0w

2 + O(|w|3). Comparing with (2.61), C∞

convergence together with the fact that π ◦ uq(−q) = 0 implies that

−aqq + (b0 + εq)q
2 +O(q3) = 0(2.65)

with εq → 0. It therefore follows that aq/q → b0. Performing a Taylor expansion about
z1 instead and writing uq(w) = ãq(w + q) + O(|w + q|2), the same reasoning shows that
ãq/q → −b0. The curves therefore limit to maps in

M(2, α1 ∩ α2, x0)(2.66)

The same analysis also shows that in case (3), as q → 0, the curves limit to maps in

M(1 + v2, α2, x0)(2.67)

In each of the cases (2.59), (2.66), (2.67), the counting of curves in these limits by definition
defines the composition

PSS(α1t
v1 · α2t

v2)(2.68)

Next consider the moduli space Mb(M,v1,v2;α1, α2;x0) which is the restriction of the
above moduli space to domains Sb,2. We have that the operation defined by Mb(M,v1,v2;α1, α2;x0)
is homotopic to (2.68). Let Σ denote the pair of pants, with three standard cylindrical ends
attached as in (2.15). We consider the nodal domain Sn of the form

S ∪ε Σ ∪ε S

where the negative strip like ends of S are glued to the positive strip like ends of Σ, a
pair of pants. Maps from Sn → M are given by the fiber product of moduli spaces given
by: ∐

x1,x2

M(v1, α1, x1)×M(Σ, x0, x1, x2)×M(v2, α2, x2)

We construct a homotopy between this moduli space and Mb(M,v1,v2;x0) in two steps.
First, we perform a finite connect sum along the cylindrical ends. Then, we can further
homotopy the complex structure and Floer datum to the domain Sb,2 above. We thus reach
the desired conclusion. �

3. PSS is an isomorphism

3.1. Constraining low energy solutions and the “low energy” PSS map. In
this subsection, we will prove geometric constraints for certain PSS solutions under the
assumption that τ from (2.5) is small and JS is sufficiently close to being split inside of U .
Our strategy will be to first consider the limiting case where τ = 0 and JS is split inside of
U and then to apply Gromov compactness. Let g(r2) be a function which agrees with r2 iff
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r ≤ δ and which agrees with zero when r > 2δ and such that d
dr (r2 − g(r2)) ≥ 0. Consider

the semi-symplectic form

ωred = ω − d(g(r)θ)(3.1)

If τ = 0 and JS is taken split, then for any PSS solution u : S → M , vector Y ∈
Hom(TS, u∗TM), and point s ∈ S with local coordinate system s + it, we can mimic
the usual construction of geometric energy by defining:

||Y ||2red = |Ys|2 + |Yt|2(3.2)

where on the right hand side of the equation, the notation | · |2 means ωred(·, JS ·). Let
Ered(u) denote the geometric energy with respect to the semi-symplectic form given by

Ered(u) =

∫
S
||du−XH ⊗ β||2redvolS(3.3)

where volS = ds ∧ dt. It is a standard calculation that the expression inside the integrand
is globally well-defined and, in fact, because we have that ωred(XHλ ,−) = 0 one obtains

Ered(u) =

∫
S
u∗(ωred)(3.4)

For any x0 ∈ Xd(X,Hλ,t) with d > 0, let A(x0) ∈ H2(M,x0) denote the relative
homology class of the natural fiber capping disc.

Lemma 3.1. Fix v > 0 and αc and assume that JS is a split almost complex structure
in U . Assume that x0 ∈ Xv(X,Hλ).

• For any u ∈M(v, αc, x0), we have that u(S) ⊂ Uδ for any u ∈M(v, αc, x0) and u
projects trivially to D.
• For any d > v, we have that for any x0 ∈ Xd(X,Hλ), M(v, αc, x0) = ∅.

Proof. The energy Ered(u) is non-negative and strictly positive if u does not lie strictly
in a fiber. Any solution u ∈M(v, αc, xv) for xv ∈ Xv(X,Hλ) satisfies Ered(u) = 0 and hence
must lie in Uδ and project trivially to D. The argument for the second claim is the same. �

Similarly, we have that under the same assumptions, for any pair x0 ∈ Xd′(X,Hλ) and
x1 ∈ Xd(X,Hλ), with d′ > d we have that M(x0, x1) is empty.

Lemma 3.2. Fix v > 0 and αc and in addition a complex structure JS,0 which is split
inside of U . There exists a τ0 such that for τ < τ0 and for any JS, which satisfies

• |JS − JS,0|Cε < τ0

• JS is split in a small neighborhood of r = δ (as well as by definition in Uε)

we have that:

• For d > v and x0 ∈ Xd(X,Hλ,t), we have that M(v, αc, x0) = ∅.
• Assume that x0 ∈ Xv(X,Hλ,t). Consider the moduli space M(v, αc, x0), u(S) ⊂ Uδ

for any u ∈M(v, αc, x0) and the relative homology class [u] = A(x0).

Proof. This is essentially a standard argument using a Morse Bott version of Gromov-
Floer compactness. The one slight complication is that as τ → 0 we do not have Morse-Bott
orbits near the boundary of U and hence cannot guarantee the unique existence of limits
for Floer solutions. However, suppose a solution spends arbitrarily long intervals of s close
to an orbit near the boundary of U , the positive end of such a PSS solution limits to some
orbit in Xd(X,Hλ,t). The integrated maximum principle shows that such a solution cannot
exist. �
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Corollary 3.3. Fix JS,0 (this by definition includes a corresponding JF,0) which is
split in U and take τ sufficiently small and JS sufficiently close to JS,0 so that 3.2 holds.

The Floer complex of CF∗(X,Hλ,t) admits a filtration by the multiplicity d, H∗log(M,D)≤λ

is triviallly filtered by v and the PSSlog map respects this filtration.

Proof. This follows immediately from Lemma 3.2 when d ≥ 1 and follows from the
integrated maximum principle when d = 0. �

Our argument will proceed by analyzing the “diagonal terms” of the PSS map with
respect to the filtrations obtained in 3.3. More precisely, let

CF∗(X;Hλ,t)(d) :=
⊕

x∈Xd(X;Hλ,t)

|ox|k,(3.5)

After choosing JF as in Corollary 3.3, we may equip this complex with a differential
∂CF(d)

which counts Floer trajectories only between orbits in Xd(X;Hλ,t). We denote the

cohomology of this complex by HF ∗(X,Hλ,t)(d). Similarly, we let

H∗log(M,D)(d) := H∗log(M,D)≤d/H∗log(M,D)≤d−1(3.6)

By counting PSS solutions in the homology classes A(x0), we obtain for every d < λ, a
map

PSS
(d)
log : H∗log(M,D)(d) → HF ∗(X,Hλ,t)(d)(3.7)

Standard Morse-Bott analysis going back to Floer shows that when d = 0, we have a
canonical identification

IF : HF ∗(X,Hλ,t)(d)
∼= H∗(X)(3.8)

and when d > 0, we have an identification

IF : HF ∗(X,Hλ,t)(d)
∼= H∗(SD)(3.9)

Lemma 3.4. The map (2.47) is an isomorphism if for every λ, (3.7) is an isomorphism
for each d < λ.

Proof. The spectral sequence associated to the filtration by d is bounded below and
exhaustive. Thus to prove that (2.46) is an isomorphism for every λ, it suffices to prove
that it is an isomorphism on the first page. This is by definition equivalent to (3.7) being an
isomorphism. After passing to direct limits, we obtain that (2.47) is an isomorphism. �

3.2. A low energy inverse. We will now construct a one-sided inverse to (3.7) for
d ≥ 1 (the case with d = 0 is classical). Consider the standard projective bundle PD =
P (ND ⊕ OD) over D. Let πP : PD → D denote the standard projection to D. There are
two natural holomorphic sections D0 and D∞ and we may algebraically identify

PD \D∞ = ND = Tot(O(D))(3.10)

PD \D0
∼= Tot(O(−D))(3.11)

It is also worth remarking that

PD \ (D∞ ∪D0) = ND \D = Tot(O(D)) \D ∼= SD × R
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where the last isomorphism makes sense in the smooth category only. Turning to symplectic
forms, we equip PD with the standard form

ωPD = 2δd(
2p

1 + p2
θ) + π∗P (ωD)(3.12)

A neighborhood of UD0 in the projective bundle can be identified with a neighborhood
of ND symplectically by setting

1/2r2
D0

=
2p

1 + p2
(3.13)

Symmetrically, we can identify a neighborhood of D∞ inside of PD with a disc bundle
and the projective bundle as arising from a symplectic sum construction of these two disc
bundles. We may embed Uδ ⊂ UD0 ⊂ PD. Notice that we can take the functions Hλ|Uδ and

extend them by zero to obtain functions H loc
λ : PD → R. We may perturb these functions

inside of Ud, d ≥ 1 as in (2.5) to obtain functions H loc
λ,t . By abuse of notation, we again label

non-constant orbits by Xd(X
loc;H loc

λ,t ) = Xd(X;Hλ,t). Set X loc to be the open set PD \D0.
We will need to adapt the Floer theoretic structures introduced in the previous sections

to this local setting.

Definition 3.5. Let Jc(PD,D) denote the space of complex structures which are split
inside of Uε and some small neighborhood of D∞. We let J locF denote the space of maps
[0, 1]→ Jc(PD,D) which are time independent in a neighborhood of D∞.

We can then consider Floer’s equation for these Hamiltonians:

{
u : R× S1 → X loc,

∂su+ J locF (∂tu−XHloc
λ,t

) = 0.
(3.14)

subject to the usual asymptotic constraints. For any two orbits x0, x1, let M(X loc;x0, x1)
denote the moduli space of these solutions modulo R-translations. By a similar Morse-Bott
compactness argument, we have that:

Lemma 3.6. Fix τ sufficiently small and J locF sufficiently close to a split time-dependent

almost complex structure. For any two orbits x0 ∈ Xd(X
loc;H loc

λ,t ) and x1 ∈ Xd′(X
loc;H loc

λ,t ),

we have that the moduli space of Floer trajectories M(X loc;x0, x1) in X loc is empty for
d > d′, and when d = d′, we have a bijection between M(X loc;x0, x1) and M(x0, x1).

As in (3.5) set:

CF∗(X loc;H loc
λ,t )(d) :=

⊕
x∈Xd(Xloc;Hloc

λ,t )

|ox|k,(3.15)

and after choosing J locF as in Lemma 3.6, define a differential counting (as usual with

appropriate signs) elements u ∈M(X loc;x0, x1). After choosing τ sufficiently small and J locF
sufficiently close to a split time-dependent almost complex structure, we have a canonical
identification of cohomologies:

HF ∗(X,Hλ,t)(d)
∼= HF ∗(X loc, H loc

λ,t )(d)(3.16)
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Definition 3.7. Given x0 ∈ Xd(X
loc;H loc

λ,t ) and αc ∈ SD0, we may choose J locS ∈
C∞(S, Jc(PD,D)) on S which agrees with J locF along the ends and with some split J0 near

z =∞. Let MPSS(X loc, x0) denote the moduli space of solutions u : S → PD satisfying

(3.17) (du−XHloc
λ,t
⊗ β)0,1 = 0

with asymptotic condition

(3.18) lim
s→−∞

u(ε(s, t)) = x0

and tangency/intersection conditions

u(z) /∈ D0 for z 6= z0;(3.19)

u(z0) intersects D0 with multiplicity d .(3.20)

Consider the fiber product moduli space:

MPSS(X loc, αc, x0) := MPSS(X loc, x0)×Evz0
αc(3.21)

After choosing τ sufficiently small and J locS sufficiently close to split, the resulting map

PSS
(d)
loc : H∗log(M,D)(d) → HF ∗(X loc, H loc

λ,t )(d) agrees with (3.7) after making the identifica-

tion (3.16). We will need one final moduli space, which has not appeared in our discussion
before.

Definition 3.8. Consider the “thimble domain” S∨ := R × S1 ∪ {0}. For x0 ∈
Xd(X

loc;Hλ,t), we let M̃SSP (v, X loc, x0) denote the moduli space of solutions to Floer’s
equation (3.14) which satisfy

u ·D∞ = v · {0}(3.22)

lim
s→+∞

u(s,−) = x0.(3.23)

We let MSSP (v, X loc, x0) denote the quotient of this moduli space by R translations.

As usual, these moduli spaces have Gromov compactifications MSSP (v, X loc, x0) (one
could also consider SFT refinements of these compactifications, but this is unnecessary for
our purposes). We will let A∨(x0) denote the relative homology class of the fiber capping
disc for x0 in X loc. We will use the simpler notation MSSP (x0) for the moduli space of SSP
thimbles in relative homology class A∨(x0).

Lemma 3.9. For τ sufficiently small, JF,loc close to split and any orbit x0 ∈ Xd(X
loc;H loc

λ,t ),

let u ∈MSSP (v, X loc, x0). Then [u] = B#A∨(x0) ∈ H2(PD, x0) for B with π∗(ωD)(B) ≥ 0.
In particular v ≤ d.

Choose τ small enough and JF,loc sufficiently close to split so that Lemmas 3.6 and 3.9
hold. As with the PSS map, we have an enhanced evaluation map

Ev∞ : MSSP (x0)→ SD∞(3.24)

For a generic choices, MSSP (x0) has dimension

vdim(MSSP (x0)) = 2n− 1 + 2v(m− 1)− |x0|.(3.25)
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For any βc → SD∞ such that |βc| = vdim(MSSP (x0)), we have that for generic choices, the
moduli space

MSSP (x0, βc) := MSSP (x0)×Ev∞ βc(3.26)

is a zero dimensional manifold. Choose a basis of pseudocycles for H∗(SD∞,k), βi over k.
For Xd(X

loc;H loc
λ,t ), define

SSP
(d)
log(ox0) =

∑
βi,vdim(MSSP (x0,βi))=0

∑
u

µ(u)β∨i t
d(3.27)

Lemma 3.10. For any class αct
v ∈ H∗log(M,D), we have that

SSP
(v)
log ◦PSS

(v)
log (αct

v) = αct
v(3.28)

Proof. Consider the moduli space of spheres with two marked points at z0 = ∞ and
z1 = 0 with Floer data coming from the natural gluing of the Floer data defining the moduli
spaces MPSS(αc, x0) and MSSP (x0). We assume that JS is taken surface-independent in a
neighborhood of D∞. We further require that{

u−1(D0) = v · z0

u−1(D∞) = v · z1

(3.29)

Denote this moduli space by M0,2(v, X loc). We will consider the moduli spaces

M0,2(v, αc, βi) := αc ×Evz0 M0,2(v, X loc)×Ev∞ βi(3.30)

For generic choices of JS and βi, this is a manifold of the correct dimension. We will
be interested in cases when M0,2(v, αc, βi) has dimension one. In this case, the Gromov

compactification of M0,2(v, αc, βi) has two strata ∂BM0,2 and ∂SM0,2. We have that

∂BM0,2 :=
⊔

x0,vdim(MPSS(αc,x0)=0)

MPSS(αc, x0)×MSSP (x0, βi)

and ∂SM0,2 is the moduli space of J0-holomorphic spheres with two marked points satisfying
(3.29) modulo R-translation in the domain with Evz0(u) ⊂ αc and Ev∞(u) ⊂ βi. The
evaluation of ∂BM0,2 gives rise to the left-hand side of (3.28) and the evaluation of ∂SM0,2

gives rise to the right hand side of (3.28). �

Theorem 3.11. The map (3.7) is an isomorphism.

Proof. In view of (3.9), we see that to prove that (3.7) is an isomorphism, it suffices
to prove that the map is injective. The fact that is injective follows from Lemma 3.10. �

3.3. Additional results. Throughout this subsection we will assume that the pair
(M,D) is log-Calabi-Yau, i.e. m = 1. We may remark that in the log Calabi-Yau case, we
may assume that the grading of all orbits obtained by the perturbation (2.5) is ≤ 0 and
that there is a unique orbit of grading 0 in both X0(X;Hλ,t) and Xd(X;Hλ,t). In the second
case, we denote this unique orbit by xd. Let αc be the fundamental pseudo-cycle of SD, we
have the following lemma which is a mild modification of Lemma 2.10.

Lemma 3.12. For any v ≥ 1, let αc denote the fundamental class of SD. The element
PSSlog(αct

v) defines a class in symplectic cohomology SH∗(X).
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Proof. The difference between this situation and Lemma 2.10 is that in the present
situation sphere bubbling can arise near the point z0. However, in this case, after passing
to the somewhere injective images of curves, this sphere bubbling occurs in codimension
two (this works with either the standard Deligne-Mumford compactification or SFT style
enhancements). �

As a result, we obtain a map

PSSlog : H0
log(M,D)→ SH0(X)(3.31)

Theorem 3.13. The map (3.31) is an isomorphism.

Proof. The arguments of subsections 3.1 and 3.2 apply without change when restricted
to the degree zero pieces. �

Let αv denote a copy of the fundamental class on either X or SD for each v. Denote
the resulting elements αvt

v by sv.

Lemma 3.14. There is an isomorphism of rings PSSlog : k[s1]→ SH0(X).

Proof. Consider the spectral sequence of Corollary 3.3. An easy modification of
this corollary shows that the ring structure on symplectic cohomology respects the fil-
tration and hence this is a spectral sequence of rings. The argument of Theorem 2.12

shows that on the first page of the spectral sequence, we have that PSS
(v1+v2)
log (sv1+v2) =

PSS
(v1)
log (sv1) · PSS

(v2)
log (sv2). We have PSSlog(s1)v = PSSlog(sv) + lower order terms. It

follows that PSSlog(s1) generates the ring freely. �

Unlike in the topological setting, the PSSlog map is not compatible with the topological
product defined in Definition 2.11. For example, it is not difficult to see by a modification
of Theorem 2.12 that in the case where M = P2 and E is a smooth elliptic curve, that we
have that PSSlog(s1)3 = PSSlog(s3)+6 (the number six arises here as the degree of the dual
elliptic curve from classical algebraic geometry).

Remark 3.15. While this note was being written,[S], which considers a related con-
struction of symplectic cohomology classes in the setting of anticanonical pencils, appeared.
In that setting, the complement X is not exact, however the normal bundle to D is trivial
(giving rise to the necessary convexity at infinity) and a version of symplectic cohomology
can be defined over a suitable Novikov ring. It is not difficult to modify our arguments to
obtain a suitable version of Theorems 3.13 and Lemma 3.14 in that setting.
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